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Goals of this Talk

Introduce the Stanford Digital Repository

Discuss our Approach(es) to re-architecting our system
Introduce SDR3, TACO, & our redesign so far

What's next?

e
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Goals of this Talk

Introduce the Stanford Digital Repository

Discuss our Approach(es) to re-architecting our system
Introduce SDR3, TACO, & our redesign so far

What's next?

e

We’d really love to hear your feedback on this work!

And special thanks to the Bootcamp group that went through a
fast-paced deep dive of some of this work on Monday.
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1. Some Context on SDR
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Stanford Digital Repository (SDR)

Currently in it's second Management Access
iteration, architecturally | e
Digitize
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. Persistent URLs | Rendering APIs
Been Worklng for Over ten years [[ File IlmageIMIEdiaI Geo V}Eb IData}
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{ Audit and Fixity 1
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[ Storage ]
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Stanford Digital Repository

Variety of digital resources & assets:

Bulk ingest of digitization labs work,
Institutional repository self-deposit,

Electronic dissertations & theses self-deposit,
Geo-datasets,

Web archiving,

Electronic resources cataloged & preserved,
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Stanford Digital Repository Metrics

Manages roughly 1.6 million distinct resources currently
Has about half a petabyte (455 TB) of digital assets in our preservation layer
~426 TB of digital assets in our repository staging systems

455 TB of digital assets & 59.1 GB of metadata in our access system(s)
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2. Our Approach(es) to
re-architecting our system
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SDR2 ‘Retrospective’

Lack of full system comprehension

Lots of unmaintained codebases & workflows
Over-engineered components

Pain points on adding new features or processes
Mismatch of design(s) & implementation(s)

“There are a lot of interaction points between layers of
the technology stack and you often need to know a lot
about all of these interactions even if you are only

currently concerned with one part of the stack.”
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Looked to Samvera / Hydra & Hybox

) samvera

http://bit. Iy/HydrasToTacos


http://bit.ly/HydrasToTacos

SDR3 Design Cycle

e 3 months of daily 1 hour meetings with architect, engineers, product owners,
administrators, & others

e Produced requirements independent of system expectations
e Built shared understanding of our current needs & conceptual architecture
e Intandem: did a ‘current state’ deep dive on our existing code
e Generated a high-level conceptual design & plan
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Hyrax Analysis: SDR Options

Do not use Hyrax at all for SDR3. Non-starter.
Use Hyrax for SDR3 entirely. However...
a. ~38% of our core, reviewed requirements are not covered by Hyrax.

b. ~24% of those are ‘Maybe’, i.e. require config, model changes, or coding.

c. Most alignment with Ul / Self-Deposit, direction of analytics, web dev.

d. Least alignment in overall architecture, bulk processing, back-end needs.
3. Integrate Hyrax & SDR3 via components & ‘seams’.

N —
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Hyrax Analysis: Possible ‘Seams’

e Valkyrie’s “internal air gap” approach for flexible data stores
e Actor Stack, Sipity, or Delayed Jobs:

o  Write Hyrax MiddlewareStack as seam to our Management API & asynchronous processing.

e Rely on both internal air gaps as well as crisp boundaries via ReST APIs.
o Independent scalability.
o Migration ‘hinge’ for components that don’t or shouldn’t fit into Hyrax.
o Keeps separate areas of our work most aligned with the Samvera community:
m self-deposit & access/discovery currently
m analytics and administration dashboards in the future
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Fedora 4 / Fedora API Analysis

Incompleteness & uncertainty of specification work

Graph store limitations
o Keep Linked Data out of our back-end system

Complexity & Comprehensibility

Performance & Extensibility

Data & Resource Handling

System Expectations

Re-approach Fedora overlap with P

»
our data publication (Access) systems ® Fedoram
@
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SDR3 Evolutionary Plan

SDR3 Design Kick-Off (x3) & Hydrox Analysis Phase
(10/03/2017-01/12/2018)

- TACO Prototype Work Cycle (01/12/2018-04/26/2018)
- SDR3 Design Iteration (4 month)

- ETDs & TACO Prototype, Bulk smoke test (3 months)
- SDR3 Design Iteration (1 month)

TACO Prototype Integration Phase

ETDs & TACO “go live” & data migration

ETDs ¢ Hydrus “go live” & data migration

http://bit.ly/HydrasToTacos
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SDR3 High Level Conceptual Design (so far)
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TACO Prototype’'s Work Cycle 1 Goals

Functional Goals

Technological Goals

Process Goals

Deposit resources (binaries &
metadata) into repository via API.

Drive forward Department API
specifications, implementations, &
practices.

Work towards new core with
something visible to limited
stakeholders to make it real-er.

Retrieve deposited resources from
repository via API.

Test implementation options for our
current SDR3 design.

Get feedback on SDR3 design, &
check for roadblocks.

Persist resources.

Vet our data models & metadata
profiles.

Keep to high-level, extensible
functional blocks.

Perform skeletal resource
processing (i.e. workflows).

Test feasibility of possible
technologies:

e Hyrax integration points.
Test throughput / scalability.
SDR2 & SDR3 analytics.
Inform cloud practices.
Cloud first but Cloud neutral.

Showcase internal / lower stack
rewrites needed for moving middle
and end-user codebases forward.

http://bit.ly/HydrasToTacos
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TACO Prototype Work Cycle

TACO, or our SDR3 Management API
& Persistence Skeleton:

e Foundational & extensible work
for evolution of SDR2.

e Modular basis for new & existing
components.

e Addresses our core
problematic technology, i.e.
Fedora 3.

e Serves user requirements for
flexible, consistent ingest &
data models.

N

Management API
Deposit a resource
Update a resource
Delete a resource
Retrieve a resource
Get a resource’s status

g A w N =

/

Administrative API: Swagger
& Go

N

Permissions Service:
Swagger & Go

Identifier Service:
Swagger & Go

Provenance Service:
Kinesis

/

Management API:
Swagger & Go

Client Application Workflow
Management API:
1. Create or Get ID for Object
2. Attach Fileset to Object
3. Attach File to Fileset
4. Add Object to Collection

Administration API (i.e.
Shape-Aware):

1. Create or Get ID for any
resource (including complex /
iterative resources)

2. Create or Get Data for any
resource (including complex /
iterative resources)

Prep & Routing Process:
Go & AWS SDK

Management Processing Steps: Sync
1. Syntactic JSON Check

2. Permissions Service Call

3. Metadata Validation: Core
processing fields? Required
relationships? Type-specific
requirements?

4. Identifier Service Calls

5. Apply or Check Versioning

6. Return SDR3 Identifier

Processing Stream:
Kinesis & Kinesis
Client Library (KCL)

Management Processing Steps: ASync
1. Transform / Enhance Metadata

2. Generate Derivative (Metadata
or Binaries)

3. Update Persistent (Meta)Data

4. Release to downstream systems

A

Metadata (JSON-LD)
Store: DynamoDb

Binaries
Store: S3

: Analytics
(Admin)



Go & Docker for TACO Codebase

e Ability to be modular, with APIs as clean boundaries & work in Cloud (AWS).

e Decision to use compiled language coupled Docker for deployment.

e Efficient Docker container deployment with small, executable binaries (as
opposed to platforms that require an operating system and server).

e Focusing on compilable language for small, efficient services led us to Go

language.

' B
& EE
HEEEEE
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Go & Swagger Prototype Codebase

Additional TACO Prototype goals included:

e rapid development and delivery;

e SWAGGER specification support for consistent API to Code translations &
share-ability of APIs across languages;

e support for continuous deployment & cloud solutions;

e parallelization fit for horizontal scalability.

{-} swagger

See the TACO Prototype GitHub Repository Wiki for all docs

http://bit.ly/HydrasToTacos
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AWS Selections for TACO

e Docker containers for sending off the codebase binary.

e AWS ECS (elastic container service) for running this image.

e CircleCl for Continuous Integration with AWS ECS & Docker due to its use by
industry for similar set-ups.

e Terraform for building out AWS infrastructure

e AWS DynamoDb for metadata persistence for the prototype.
o Very likely to use RDS in production.

e AWS S3 for binaries for the prototype.

http://bit.ly/HydrasToTacos See the TACO Prototype GitHub Repository Wiki for all docs + more
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Cloud-first but Cloud-neutral

Our considered & kept-in-mind graceful degradation paths:

Docker => Docker is reusable.

AWS ECS => Any system or VM that can run Docker. Docker swarm?
Swagger 2.0 => Specification Built for Translateability

Go + go-swagger => Just use Ruby.

AWS dynamodb => CouchDB or Postgres.

AWS s3 => File system.

AWS kinesis => Kafka or Spark Streaming when ready.

http://bit.Iy/HydrasToTacos See the TACO Prototype GitHub Repository Wiki for all docs + more
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Kafka / Kinesis?

e Early design had event driven system
for managing resource state & asych,
DAG-based processing
Put too much intelligence into TACO
Kinesis deemed not suitable
Re-designing to use Kafka-inspired
event system within our Provenance
& State Service

e Our asychronous, DAG-driven
processing inspired by Airflow
becomes parallel to SDR3

http://bit.ly/HydrasToTacos
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Special Note: Fedora 4 API vs TACO API

e TACO API aims to be much simpler than Fedora API.

e Decoupled from Linked Data Platform at this level of our stack.
o  We are supporting JSON / JSON-LD, which allows LD higher up.

e Reduced API calls, leading to increased performance.
o Up to %50 less if we include ACLs, FileSets & ORE proxy ordering.

® ® ™
* o Fedora
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Digital Repository Collection
(optional abstraction layer)
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$schema:
title:
description:
"object",
- required:

type:

"http://json-schema.org/draft-06/schema#",

"Digital Repository Object",
"Domain-defined abstraction of a 'work'. Digital Repository Objects' abstraction is describable for our domain’s purposes, i.e. for management needs within our system.",

"@context",

"@type",
"externalIldentifier",
"label",
"tacoIldentifier",

"version",
"administrative",

"access",
"identification",
"structural"

1,

- properties:

{

- @context: {

b

- @type:
description: "The content type of the DRO. Selected from an established set of values.",
type: "string",

description: "URI for the JSON-LD context definitions.",
type: "string"

{

- enum: [

e

"http://sdr.sul.stanford.edu/models/sdr3-object.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-3d.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-agreement.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-book. jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-document.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-geo.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-image.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-page.jsonld",

"http://sdr.sul.stanford.edu/models/sdr3-manuscript.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-map.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-media.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-track.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-webarchive-binary.jsonld",

"http://sdr.sul.stanford.edu/models/sdr3-webarchive-seed.jsonld"

TACO
Metadata
Application
Profiles (JSON
Schema)

See the SDR3 Metadata Models for MAPS, docs + more
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4. What's Next?
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Current Design Work

e File system analysis for options & costs
e Asynchronous & batch processing system design work going on
o Heavily influenced by Apache Airflow

e Metadata efforts have free range approach
o Starting with a metadata use cases analysis before jumping into schemas / ontologies
o JSON[-LD] & JSON Schema used for flexibility, separation of external semantics & internal
data shapes

e Preparing for next work cycle to revise & connect TACO ultimately to a
self-deposit system & a bulk load job

http://bit.ly/HydrasToTacos
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Keeping Community Connections

Samvera architecture & front-end work re-approach

Interest in architectural overlaps with FOLIO

Code4Lib Spark in the Dark overlaps

Using PCDM, MOAB => OCFL, revisiting other places to share our data
specifications

Blacklight, IlIF, & related Access systems community work untouched

e Looking outside of cultural heritage for community partners & ideas
o Airflow
o AWS

e Asking our community friends & experts like ELAG participants for feedback

http://bit.ly/HydrasToTacos
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Questions or
Feedback? 7 —

cmharlow@stanford.edu
@cm_harlow

=
/
~
https://github.com/sul-dlss-labs/taco/ /
STANFORD 7 ‘ \
% UNIVERSITY ® ?

LIBRARIES °

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/

