From Hydras to TACOs:
Evolving the Stanford
Digital Repository ;.. ~

ELAG 2018 P
[\

Christina Harlow, Erin Fahy

STANFORD
% UNIVERSITY
http://bit.ly/HydrasToTacos LIBRARIES

http://bit.ly/HydrasToTacos

Goals of this Talk

Introduce the Stanford Digital Repository

Discuss our Approach(es) to re-architecting our system
Introduce SDR3, TACO, & our redesign so far

What's next?

e

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Goals of this Talk

Introduce the Stanford Digital Repository

Discuss our Approach(es) to re-architecting our system
Introduce SDR3, TACO, & our redesign so far

What's next?

e

We’d really love to hear your feedback on this work!

And special thanks to the Bootcamp group that went through a
fast-paced deep dive of some of this work on Monday.

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

1. Some Context on SDR

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Stanford Digital Repository (SDR)

Currently in it's second Management Access
iteration, architecturally | e
Digitize
(i.e. “SDRZ”) { S h H Brow. J{ Harvest]
Delivery
Describe
. Persistent URLs | Rendering APIs
Been Worklng for Over ten years [[File IlmageIMIEdiaI Geo V}Eb IData}
Guided by a ‘3 Spheres
Topology’ ,
{ Ingest I Retrieval]
{ Audit and Fixity 1
{ Replication]
[Storage]
Preservation

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Stanford Digital Repository

Variety of digital resources & assets:

Bulk ingest of digitization labs work,
Institutional repository self-deposit,

Electronic dissertations & theses self-deposit,
Geo-datasets,

Web archiving,

Electronic resources cataloged & preserved,

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Stanford Digital Repository Metrics

Manages roughly 1.6 million distinct resources currently
Has about half a petabyte (455 TB) of digital assets in our preservation layer
~426 TB of digital assets in our repository staging systems

455 TB of digital assets & 59.1 GB of metadata in our access system(s)

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

I Ingest | High-Level
l Pre-Assembl H
y |

(| s || £10s || orgisrion, | ow | | s | gz | gy || ows | OVErView of SDR
I Google books, Other) : ecosystem
__:____:::____:____:::____:____I,__________________________I June 2017
| DOR Services II PURL+ I This doesn’t include
I l everything but focuses on
I — Dor Dor Workf1 Fed | porL | | ; i i

Services Services SURL Workflow ﬁ e3ora | Stacks Wowza PURL E—— appllcatlor\s in end-to-end
1| A Gen Service I I SDR general processing.
Y
| |
| Robots I

Sdr
Gis) Dor WAS WAS

I Robots Lyber Robot SsersT ComrTlon. Item ETD ol Goobi b Pres Robot Metadata I

Master Core controller Accessioning Release Robots X Robot Core .

suite robots Suite Extractor
| Robots |
L e o oo oo o o e e e e e e e mm e mm e e mm e mm mm mm mm mm mm Em Em Em Em Em Em Em Em Em Em Em Em Em = == |
I_________________ I_____ I
|
| Argo+ I | |
File
Dor Modsulator Dor SDR . SDR I Spotlight
I Indexing Argo Modsulator SUL MQ Camel I preservation mc')ab' Archive system Services Exhibits I
- versioning catalog & | -
| App App Rails Routes I core T App Portfolios I
' |
| |
I — S
—
[| .)
IStacks / Shelves I'Index1ng, Access, & Discovery l
| |
NFS | Di Mods

I stacks T AV Geo WAS I Dilsscaotvcehreyr sw-indexer || sul-embed SearchWorks SWAP profiling |l
| l | P indexer |

pttp://bit.ly/HydrasToTacos __

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/cmh2166/sdr_current_state/blob/master/SURI.md
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/portfolios
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/argo
https://github.com/sul-dlss/modsulator
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://docs.google.com/drawings/d/1f2nuhSlG7Ct2RZLYZTHZduHuEPQTg2Rq9BW0IG_VbcQ/edit?usp=sharing
https://docs.google.com/drawings/d/1b9SisyUuUFs2RqDh11LRjXt15Hm6TT6HEq4dNuHXz-s/edit?usp=sharing
https://docs.google.com/drawings/d/11snoNlCLLUEjI1onYC0TqlY-2PqeJhp7QuqBeJK1KIQ/edit?usp=sharing
https://docs.google.com/drawings/d/1QT8UwrEkZtUSblJgrDoA-VcR7N0IxkBkzM4UiUMON4A/edit?usp=sharing
https://github.com/sul-dlss/assembly-utils
https://github.com/sul-dlss/assembly-utils

2. Our Approach(es) to
re-architecting our system

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

[~ = = = = = = = e e e e e e e e e e e e e e o Em e Em e e Em = = _.I
[]
I Ingest | High-Level
I N - .
(Pr.e Assembly . Assembl . . Assembly Assembly I overVIeW Of SDR
I Hydrus ETD (Digitization, Goobi tils Dir Validator ObjectFile Image WAS I
Google books, Other)
I N/ | ecosystem
__:____:::____:____:::____:____I.__________________________I June 2017
R Serv IIPURI_+ I This doesn’t include
_ga— .
(l | everything but focuses on
SURL mmﬂw torkfloy 1 { Fedora Iyl stacks Wowza PoRL [PR applications in end-to-end
A\ I I SDR general processing.
- - [
Sdr
Gis . Dor WAS WAS
e Assembly ComrTlon . Ltem ETD robot Goobi sb Pres Robot Metadata
controller Accessioning Release Robots X Robot Core .
suite robots Robots Suite Extractor
S R S — = = = =
I |
I or Modsulator or SDR i SDR I Spotlight
I In&;;En Argo Modsulator SUL MQ cSEZl preservation mQab' LR system Services Exhibits
- versioning catalog & | ;
| App App Rails Routes core el App Portfolios
' I

| (o e e e e e e e e e e e e e

e

IStacks / Shelves

| Stacks NFS
I mounts

pttp://bit.ly/HydrasToTacos __

ANV Geo WAS

I Indexing, Access, & Discovery

|
| Discovery : Moﬁ;

| Dispatcher sw-indexer sul-embed SearchWorks SWAP profiling
I | > indexer

|
|
|
|
—_
— 1
|
|
|
I
=
|
I
|
|

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/cmh2166/sdr_current_state/blob/master/SURI.md
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/portfolios
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/argo
https://github.com/sul-dlss/modsulator
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://docs.google.com/drawings/d/1f2nuhSlG7Ct2RZLYZTHZduHuEPQTg2Rq9BW0IG_VbcQ/edit?usp=sharing
https://docs.google.com/drawings/d/1b9SisyUuUFs2RqDh11LRjXt15Hm6TT6HEq4dNuHXz-s/edit?usp=sharing
https://docs.google.com/drawings/d/11snoNlCLLUEjI1onYC0TqlY-2PqeJhp7QuqBeJK1KIQ/edit?usp=sharing
https://docs.google.com/drawings/d/1QT8UwrEkZtUSblJgrDoA-VcR7N0IxkBkzM4UiUMON4A/edit?usp=sharing
https://github.com/sul-dlss/assembly-utils
https://github.com/sul-dlss/assembly-utils

SDR2 ‘Retrospective’

Lack of full system comprehension

Lots of unmaintained codebases & workflows
Over-engineered components

Pain points on adding new features or processes
Mismatch of design(s) & implementation(s)

“There are a lot of interaction points between layers of
the technology stack and you often need to know a lot
about all of these interactions even if you are only

currently concerned with one part of the stack.”

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Looked to Samvera / Hydra & Hybox

) samvera

http://bit. Iy/HydrasToTacos

http://bit.ly/HydrasToTacos

SDR3 Design Cycle

e 3 months of daily 1 hour meetings with architect, engineers, product owners,
administrators, & others

e Produced requirements independent of system expectations
e Built shared understanding of our current needs & conceptual architecture
e Intandem: did a ‘current state’ deep dive on our existing code
e Generated a high-level conceptual design & plan

— S s =5 - T o= mame= : - B

Y | = = m=cs BB == T S = P

= O1n _ —— B B = =%
= B e g —Ear——
PR = S8 =
E¥ Dor Services (G.. EY Dor Services Ap... EY Hydrox Dataflo... EY Hydrus[wWiP] By Pre-Assembly

http.suiiyrmyuras 1u1acus

http://bit.ly/HydrasToTacos

Hyrax Analysis: SDR Options

Do not use Hyrax at all for SDR3. Non-starter.
Use Hyrax for SDR3 entirely. However...
a. ~38% of our core, reviewed requirements are not covered by Hyrax.

b. ~24% of those are ‘Maybe’, i.e. require config, model changes, or coding.

c. Most alignment with Ul / Self-Deposit, direction of analytics, web dev.

d. Least alignment in overall architecture, bulk processing, back-end needs.
3. Integrate Hyrax & SDR3 via components & ‘seams’.

N —

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Hyrax Analysis: Possible ‘Seams’

e Valkyrie’s “internal air gap” approach for flexible data stores
e Actor Stack, Sipity, or Delayed Jobs:

o Write Hyrax MiddlewareStack as seam to our Management API & asynchronous processing.

e Rely on both internal air gaps as well as crisp boundaries via ReST APIs.
o Independent scalability.
o Migration ‘hinge’ for components that don’t or shouldn’t fit into Hyrax.
o Keeps separate areas of our work most aligned with the Samvera community:
m self-deposit & access/discovery currently
m analytics and administration dashboards in the future

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos
https://github.com/samvera-labs/valkyrie
https://github.com/samvera/hyrax/blob/25eeefb21a2ed084fb5277febaeb38eb2b85a2c3/app/services/hyrax/default_middleware_stack.rb

Fedora 4 / Fedora API Analysis

Incompleteness & uncertainty of specification work

Graph store limitations
o Keep Linked Data out of our back-end system

Complexity & Comprehensibility

Performance & Extensibility

Data & Resource Handling

System Expectations

Re-approach Fedora overlap with P

»
our data publication (Access) systems ® Fedoram
@

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

SDR3 Evolutionary Plan

SDR3 Design Kick-Off (x3) & Hydrox Analysis Phase
(10/03/2017-01/12/2018)

- TACO Prototype Work Cycle (01/12/2018-04/26/2018)
- SDR3 Design Iteration (4 month)

- ETDs & TACO Prototype, Bulk smoke test (3 months)
- SDR3 Design Iteration (1 month)

TACO Prototype Integration Phase

ETDs & TACO “go live” & data migration

ETDs ¢ Hydrus “go live” & data migration

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

SDR3 High Level Conceptual Design (so far)

Deposit GUIs SOPA
g— - . & : e
| (Administration GUI)
Deposit (subsumes Atimlmstglatls?n Administration
Self-Deposit) T Ssembly Analytics H —O
Processing
Dashboard
Management
____——\ —

o] Users &
Permissions Groups
Service sroups

-

Management

—————— o —

r

TACO -
(Repository Domain Management) |
Identifier
.. e
CRUD, Query Metadata or
File Stores
.. I Provenance & State O_ Refritos
| Service (Async Processing)
\ /e
| Preservation —— Preservation
I Hand-off :
Bm%@le Metadata Store | Ac.:ces.s :
atore Publication / —— Public Access Discovery & Displa
.IIIJIL.IyII |yurao|U| b I : Exposure

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/permissions-service/
https://github.com/sul-dlss-labs/permissions-service/
https://github.com/sul-dlss-labs/identifier-service/
https://github.com/sul-dlss-labs/identifier-service/
https://github.com/sul-dlss-labs/taco

TACO Prototype’'s Work Cycle 1 Goals

Functional Goals

Technological Goals

Process Goals

Deposit resources (binaries &
metadata) into repository via API.

Drive forward Department API
specifications, implementations, &
practices.

Work towards new core with
something visible to limited
stakeholders to make it real-er.

Retrieve deposited resources from
repository via API.

Test implementation options for our
current SDR3 design.

Get feedback on SDR3 design, &
check for roadblocks.

Persist resources.

Vet our data models & metadata
profiles.

Keep to high-level, extensible
functional blocks.

Perform skeletal resource
processing (i.e. workflows).

Test feasibility of possible
technologies:

e Hyrax integration points.
Test throughput / scalability.
SDR2 & SDR3 analytics.
Inform cloud practices.
Cloud first but Cloud neutral.

Showcase internal / lower stack
rewrites needed for moving middle
and end-user codebases forward.

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

TACO Prototype Work Cycle

TACO, or our SDR3 Management API
& Persistence Skeleton:

e Foundational & extensible work
for evolution of SDR2.

e Modular basis for new & existing
components.

e Addresses our core
problematic technology, i.e.
Fedora 3.

e Serves user requirements for
flexible, consistent ingest &
data models.

N

Management API
Deposit a resource
Update a resource
Delete a resource
Retrieve a resource
Get a resource’s status

g A w N =

/

Administrative API: Swagger
& Go

N

Permissions Service:
Swagger & Go

Identifier Service:
Swagger & Go

Provenance Service:
Kinesis

/

Management API:
Swagger & Go

Client Application Workflow
Management API:
1. Create or Get ID for Object
2. Attach Fileset to Object
3. Attach File to Fileset
4. Add Object to Collection

Administration API (i.e.
Shape-Aware):

1. Create or Get ID for any
resource (including complex /
iterative resources)

2. Create or Get Data for any
resource (including complex /
iterative resources)

Prep & Routing Process:
Go & AWS SDK

Management Processing Steps: Sync
1. Syntactic JSON Check

2. Permissions Service Call

3. Metadata Validation: Core
processing fields? Required
relationships? Type-specific
requirements?

4. Identifier Service Calls

5. Apply or Check Versioning

6. Return SDR3 Identifier

Processing Stream:
Kinesis & Kinesis
Client Library (KCL)

Management Processing Steps: ASync
1. Transform / Enhance Metadata

2. Generate Derivative (Metadata
or Binaries)

3. Update Persistent (Meta)Data

4. Release to downstream systems

A

Metadata (JSON-LD)
Store: DynamoDb

Binaries
Store: S3

: Analytics
(Admin)

Go & Docker for TACO Codebase

e Ability to be modular, with APIs as clean boundaries & work in Cloud (AWS).

e Decision to use compiled language coupled Docker for deployment.

e Efficient Docker container deployment with small, executable binaries (as
opposed to platforms that require an operating system and server).

e Focusing on compilable language for small, efficient services led us to Go

language.

' B
& EE
HEEEEE

http://bit.ly/HydrasToTacos See the TACO Prototype GitHub Repository Wiki for all docs + more

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/wiki

Go & Swagger Prototype Codebase

Additional TACO Prototype goals included:

e rapid development and delivery;

e SWAGGER specification support for consistent API to Code translations &
share-ability of APIs across languages;

e support for continuous deployment & cloud solutions;

e parallelization fit for horizontal scalability.

{-} swagger

See the TACO Prototype GitHub Repository Wiki for all docs

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/wiki

AWS Selections for TACO

e Docker containers for sending off the codebase binary.

e AWS ECS (elastic container service) for running this image.

e CircleCl for Continuous Integration with AWS ECS & Docker due to its use by
industry for similar set-ups.

e Terraform for building out AWS infrastructure

e AWS DynamoDb for metadata persistence for the prototype.
o Very likely to use RDS in production.

e AWS S3 for binaries for the prototype.

http://bit.ly/HydrasToTacos See the TACO Prototype GitHub Repository Wiki for all docs + more

http://bit.ly/HydrasToTacos
https://www.terraform.io/
https://github.com/sul-dlss-labs/taco/wiki

Cloud-first but Cloud-neutral

Our considered & kept-in-mind graceful degradation paths:

Docker => Docker is reusable.

AWS ECS => Any system or VM that can run Docker. Docker swarm?
Swagger 2.0 => Specification Built for Translateability

Go + go-swagger => Just use Ruby.

AWS dynamodb => CouchDB or Postgres.

AWS s3 => File system.

AWS kinesis => Kafka or Spark Streaming when ready.

http://bit.Iy/HydrasToTacos See the TACO Prototype GitHub Repository Wiki for all docs + more

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/wiki

Kafka / Kinesis?

e Early design had event driven system
for managing resource state & asych,
DAG-based processing
Put too much intelligence into TACO
Kinesis deemed not suitable
Re-designing to use Kafka-inspired
event system within our Provenance
& State Service

e Our asychronous, DAG-driven
processing inspired by Airflow
becomes parallel to SDR3

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos
https://airflow.apache.org/

Special Note: Fedora 4 API vs TACO API

e TACO API aims to be much simpler than Fedora API.

e Decoupled from Linked Data Platform at this level of our stack.
o We are supporting JSON / JSON-LD, which allows LD higher up.

e Reduced API calls, leading to increased performance.
o Up to %50 less if we include ACLs, FileSets & ORE proxy ordering.

® ® ™
* o Fedora

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Digital Repository Collection
(optional abstraction layer)

is represented by }————D{ Analog Resource / Work |

PURL/XML
hasMember

TACO
Data
Models o

Metadata

i

Digital Repository Object

hasMember

)

Digital Repository Object - Part
(optional abstraction layer)

is contained by

has target

| Operational Annotation |

access to |—| Authorization / Permission |

File Grouping

A

is contained by

agreement

Model Structural Overview
Blue == Managed by Domain ;

Files (Binaries) DRO: Agreement |

Purple == File managed by Domain ;
Orange == relationship ;
Green == Externally managed by other domain or at

application level | -) |
File Grouping

is contained by

Files (Binaries)

$schema:
title:
description:
"object",
- required:

type:

"http://json-schema.org/draft-06/schema#",

"Digital Repository Object",
"Domain-defined abstraction of a 'work'. Digital Repository Objects' abstraction is describable for our domain’s purposes, i.e. for management needs within our system.",

"@context",

"@type",
"externalIldentifier",
"label",
"tacoIldentifier",

"version",
"administrative",

"access",
"identification",
"structural"

1,

- properties:

{

- @context: {

b

- @type:
description: "The content type of the DRO. Selected from an established set of values.",
type: "string",

description: "URI for the JSON-LD context definitions.",
type: "string"

{

- enum: [

e

"http://sdr.sul.stanford.edu/models/sdr3-object.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-3d.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-agreement.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-book. jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-document.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-geo.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-image.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-page.jsonld",

"http://sdr.sul.stanford.edu/models/sdr3-manuscript.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-map.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-media.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-track.jsonld",
"http://sdr.sul.stanford.edu/models/sdr3-webarchive-binary.jsonld",

"http://sdr.sul.stanford.edu/models/sdr3-webarchive-seed.jsonld"

TACO
Metadata
Application
Profiles (JSON
Schema)

See the SDR3 Metadata Models for MAPS, docs + more

https://github.com/sul-dlss-labs/sdr3-models

4. What's Next?

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Current Design Work

e File system analysis for options & costs
e Asynchronous & batch processing system design work going on
o Heavily influenced by Apache Airflow

e Metadata efforts have free range approach
o Starting with a metadata use cases analysis before jumping into schemas / ontologies
o JSON[-LD] & JSON Schema used for flexibility, separation of external semantics & internal
data shapes

e Preparing for next work cycle to revise & connect TACO ultimately to a
self-deposit system & a bulk load job

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Keeping Community Connections

Samvera architecture & front-end work re-approach

Interest in architectural overlaps with FOLIO

Code4Lib Spark in the Dark overlaps

Using PCDM, MOAB => OCFL, revisiting other places to share our data
specifications

Blacklight, IlIF, & related Access systems community work untouched

e Looking outside of cultural heritage for community partners & ideas
o Airflow
o AWS

e Asking our community friends & experts like ELAG participants for feedback

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos

Questions or
Feedback? 7 —

cmharlow@stanford.edu
@cm_harlow

=
/
~
https://github.com/sul-dlss-labs/taco/ /
STANFORD 7 ‘ \
% UNIVERSITY ® ?

LIBRARIES °

http://bit.ly/HydrasToTacos

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/

