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Goals of this Talk
1. Introduce the Stanford Digital Repository
2. Discuss our Approach(es) to re-architecting our system
3. Introduce SDR3, TACO, & our redesign so far
4. What’s next?
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Goals of this Talk
1. Introduce the Stanford Digital Repository
2. Discuss our Approach(es) to re-architecting our system
3. Introduce SDR3, TACO, & our redesign so far
4. What’s next?

We’d really love to hear your feedback on this work! 

And special thanks to the Bootcamp group that went through a 
fast-paced deep dive of some of this work on Monday.
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1. Some Context on SDR
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Stanford Digital Repository (SDR)
Currently in it’s second 
iteration, architecturally 
(i.e. “SDR2”)

Been working for over ten years

Guided by a ‘3 Spheres 
Topology’
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Stanford Digital Repository
Variety of digital resources & assets:

● Bulk ingest of digitization labs work, 
● Institutional repository self-deposit, 
● Electronic dissertations & theses self-deposit, 
● Geo-datasets, 
● Web archiving, 
● Electronic resources cataloged & preserved,
● ...
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Stanford Digital Repository Metrics
Manages roughly 1.6 million distinct resources currently

Has about half a petabyte (455 TB) of digital assets in our preservation layer

~426 TB of digital assets in our repository staging systems

455 TB of digital assets & 59.1 GB of metadata in our access system(s)
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2. Our Approach(es) to 
re-architecting our system
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SDR2 ‘Retrospective’
● Lack of full system comprehension
● Lots of unmaintained codebases & workflows
● Over-engineered components 
● Pain points on adding new features or processes
● Mismatch of design(s) & implementation(s)

“There are a lot of interaction points between layers of 
the technology stack and you often need to know a lot 
about all of these interactions even if you are only 
currently concerned with one part of the stack.”
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Looked to Samvera / Hydra & Hybox
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SDR3 Design Cycle
● 3 months of daily 1 hour meetings with architect, engineers, product owners, 

administrators, & others
● Produced requirements independent of system expectations
● Built shared understanding of our current needs & conceptual architecture
● In tandem: did a ‘current state’ deep dive on our existing code
● Generated a high-level conceptual design & plan
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Hyrax Analysis: SDR Options
1. Do not use Hyrax at all for SDR3. Non-starter.
2. Use Hyrax for SDR3 entirely. However...

a. ~38% of our core, reviewed requirements are not covered by Hyrax.
b. ~24% of those are ‘Maybe’, i.e. require config, model changes, or coding.
c. Most alignment with UI / Self-Deposit, direction of analytics, web dev.
d. Least alignment in overall architecture, bulk processing, back-end needs.

3. Integrate Hyrax & SDR3 via components & ‘seams’.
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Hyrax Analysis: Possible ‘Seams’
● Valkyrie’s “internal air gap” approach for flexible data stores
● Actor Stack, Sipity, or Delayed Jobs: 

○ Write Hyrax MiddlewareStack as seam to our Management API & asynchronous processing. 
● Rely on both internal air gaps as well as crisp boundaries via ReST APIs.

○ Independent scalability.
○ Migration ‘hinge’ for components that don’t or shouldn’t fit into Hyrax.
○ Keeps separate areas of our work most aligned with the Samvera community:

■ self-deposit & access/discovery currently 
■ analytics and administration dashboards in the future
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Fedora 4 / Fedora API Analysis
● Incompleteness & uncertainty of specification work
● Graph store limitations

○ Keep Linked Data out of our back-end system

● Complexity & Comprehensibility
● Performance & Extensibility
● Data & Resource Handling
● System Expectations
● Re-approach Fedora overlap with 

our data publication (Access) systems

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

3. “SDR3” & TACO
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SDR3 Evolutionary Plan
SDR3 Design Kick-Off (x3) & Hydrox Analysis Phase 

(10/03/2017-01/12/2018)

TACO Skeleton Prototype Phase
- TACO Prototype Work Cycle (01/12/2018-04/26/2018)

- SDR3 Design Iteration (4 month)
- ETDs ⇔ TACO Prototype, Bulk smoke test (3 months)

- SDR3 Design Iteration (1 month)

TACO Prototype Integration Phase 

ETDs ⇔ TACO “go live” & data migration

ETDs ⇔ Hydrus “go live” & data migration

...
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TACO Prototype’s Work Cycle 1 Goals

Deposit resources (binaries & 
metadata) into repository via API.

Drive forward Department API 
specifications, implementations, & 
practices.

Work towards new core with 
something visible to limited 
stakeholders to make it real-er.

Retrieve deposited resources from 
repository via API.

Test implementation options for our 
current SDR3 design.

Get feedback on SDR3 design, & 
check for roadblocks.

Persist resources. Vet our data models & metadata 
profiles.

Keep to high-level, extensible 
functional blocks.

Perform skeletal resource 
processing (i.e. workflows).

Test feasibility of possible 
technologies:

● Hyrax integration points.
● Test throughput / scalability.
● SDR2 & SDR3 analytics.
● Inform cloud practices.
● Cloud first but Cloud neutral.

Showcase internal / lower stack 
rewrites needed for moving middle 
and end-user codebases forward.
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TACO Prototype Work Cycle

TACO, or our SDR3 Management API 
& Persistence Skeleton: 

● Foundational & extensible work 
for evolution of SDR2. 

● Modular basis for new & existing 
components.

● Addresses our core 
problematic technology, i.e. 
Fedora 3. 

● Serves user requirements for 
flexible, consistent ingest & 
data models.

Management API
1. Deposit a resource
2. Update a resource
3. Delete a resource
4. Retrieve a resource
5. Get a resource’s status

Client Application Workflow
Management API:
1. Create or Get ID for Object
2. Attach Fileset to Object
3. Attach File to Fileset
4. Add Object to Collection

Administration API (i.e. 
Shape-Aware):
1. Create or Get ID for any 
resource (including complex / 
iterative resources)
2. Create or Get Data for any 
resource (including complex / 
iterative resources)

Management Processing Steps: Sync
1. Syntactic JSON Check
2. Permissions Service Call
3. Metadata Validation: Core 
processing fields? Required 
relationships? Type-specific 
requirements?
4. Identifier Service Calls
5. Apply or Check Versioning
6. Return SDR3 Identifier

Management Processing Steps: ASync
1. Transform / Enhance Metadata
2. Generate Derivative (Metadata 
or Binaries)
3. Update Persistent (Meta)Data
4. Release to downstream systems

Processing Stream: 
Kinesis & Kinesis 
Client Library (KCL)

Binaries 
Store: S3

Metadata (JSON-LD) 
Store: DynamoDb

Management API: 
Swagger & Go

Prep & Routing Process: 
Go & AWS SDK

Permissions Service: 
Swagger & Go

Identifier Service: 
Swagger & Go

Provenance Service: 
Kinesis

Administrative API: Swagger 
& Go

AccessPreservation Analytics 
(Admin)
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Go & Docker for TACO Codebase
● Ability to be modular, with APIs as clean boundaries & work in Cloud (AWS).
● Decision to use compiled language coupled Docker for deployment.
● Efficient Docker container deployment with small, executable binaries (as 

opposed to platforms that require an operating system and server).
● Focusing on compilable language for small, efficient services led us to Go 

language.

See the TACO Prototype GitHub Repository Wiki for all docs + more .
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Go & Swagger Prototype Codebase 
Additional TACO Prototype goals included:

● rapid development and delivery; 
● SWAGGER specification support for consistent API to Code translations & 

share-ability of APIs across languages; 
● support for continuous deployment & cloud solutions; 
● parallelization fit for horizontal scalability.

See the TACO Prototype GitHub Repository Wiki for all docs + more .
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AWS Selections for TACO 
● Docker containers for sending off the codebase binary.
● AWS ECS (elastic container service) for running this image.
● CircleCI for Continuous Integration with AWS ECS & Docker due to its use by 

industry for similar set-ups.
● Terraform for building out AWS infrastructure
● AWS DynamoDb for metadata persistence for the prototype.

○ Very likely to use RDS in production.

● AWS S3 for binaries for the prototype.

See the TACO Prototype GitHub Repository Wiki for all docs + more .
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Cloud-first but Cloud-neutral
Our considered & kept-in-mind graceful degradation paths:

● Docker => Docker is reusable.
● AWS ECS => Any system or VM that can run Docker. Docker swarm?
● Swagger 2.0 => Specification Built for Translateability
● Go + go-swagger => Just use Ruby.
● AWS dynamodb => CouchDB or Postgres.
● AWS s3 => File system.
● AWS kinesis => Kafka or Spark Streaming when ready.

See the TACO Prototype GitHub Repository Wiki for all docs + more .
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Kafka / Kinesis?
● Early design had event driven system 

for managing resource state & asych, 
DAG-based processing

● Put too much intelligence into TACO
● Kinesis deemed not suitable
● Re-designing to use Kafka-inspired 

event system within our Provenance 
& State Service

● Our asychronous, DAG-driven 
processing inspired by Airflow 
becomes parallel to SDR3

http://bit.ly/HydrasToTacos
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Special Note: Fedora 4 API vs TACO API
● TACO API aims to be much simpler than Fedora API.
● Decoupled from Linked Data Platform at this level of our stack.

○ We are supporting JSON / JSON-LD, which allows LD higher up.

● Reduced API calls, leading to increased performance.
○ Up to %50 less if we include ACLs, FileSets & ORE proxy ordering.
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See the SDR3 Metadata Models for MAPS, docs + more .

TACO
Metadata
Application 
Profiles (JSON 
Schema)
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4. What’s Next?
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Current Design Work
● File system analysis for options & costs
● Asynchronous & batch processing system design work going on

○ Heavily influenced by Apache Airflow

● Metadata efforts have free range approach
○ Starting with a metadata use cases analysis before jumping into schemas / ontologies
○ JSON[-LD] & JSON Schema used for flexibility, separation of external semantics & internal 

data shapes

● Preparing for next work cycle to revise & connect TACO ultimately to a 
self-deposit system & a bulk load job
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Keeping Community Connections
● Samvera architecture & front-end work re-approach
● Interest in architectural overlaps with FOLIO
● Code4Lib Spark in the Dark overlaps
● Using PCDM, MOAB => OCFL, revisiting other places to share our data 

specifications
● Blacklight, IIIF, & related Access systems community work untouched
● Looking outside of cultural heritage for community partners & ideas

○ Airflow
○ AWS

● Asking our community friends & experts like ELAG participants for feedback
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Questions or 
Feedback?

cmharlow@stanford.edu
@cm_harlow

https://github.com/sul-dlss-labs/taco/ 

?

?
?

??
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