
http://bit.ly/HydrasToTacos 

From Hydras to TACOs: 
Evolving the Stanford 
Digital Repository

ELAG 2018
Christina Harlow, Erin Fahy

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Goals of this Talk
1. Introduce the Stanford Digital Repository
2. Discuss our Approach(es) to re-architecting our system
3. Introduce SDR3, TACO, & our redesign so far
4. What’s next?

 

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Goals of this Talk
1. Introduce the Stanford Digital Repository
2. Discuss our Approach(es) to re-architecting our system
3. Introduce SDR3, TACO, & our redesign so far
4. What’s next?

We’d really love to hear your feedback on this work! 

And special thanks to the Bootcamp group that went through a 
fast-paced deep dive of some of this work on Monday.

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

1. Some Context on SDR

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Stanford Digital Repository (SDR)
Currently in it’s second 
iteration, architecturally 
(i.e. “SDR2”)

Been working for over ten years

Guided by a ‘3 Spheres 
Topology’

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Stanford Digital Repository
Variety of digital resources & assets:

● Bulk ingest of digitization labs work, 
● Institutional repository self-deposit, 
● Electronic dissertations & theses self-deposit, 
● Geo-datasets, 
● Web archiving, 
● Electronic resources cataloged & preserved,
● ...

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Stanford Digital Repository Metrics
Manages roughly 1.6 million distinct resources currently

Has about half a petabyte (455 TB) of digital assets in our preservation layer

~426 TB of digital assets in our repository staging systems

455 TB of digital assets & 59.1 GB of metadata in our access system(s)

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

PURL+DOR Services
Dor 

Services 
App

Dor 
Services 

Gem
SURI

Dor 
Workflow 
Service

Workflow 
Service

Robots
Robots 
Master

Lyber 
Core

ETD 
Robots

WAS 
Robot 
Suite

Assembly Goobi 
Robot

Robot 
controller

Gis 
robot 
suite

Common 
Accessioning

Item 
Release

WAS 
Metadata 
Extractor

Sdr 
Pres 
Core 
Robots

Dor 
gsb 

robots

High-Level 
Overview of SDR 

ecosystem
June 2017

This doesn’t include 
everything but focuses on 
applications in end-to-end 

SDR general processing. 

Argo+

Fedora 
3 PURL

SUL MQ

PURL 
Fetcher

Preservation
SDR 

preservation 
core

moab 
versioning

Archive 
catalog

File 
system 

& 
tapes?

Indexing, Access, & Discovery

Discovery 
Dispatcher sw-indexer sul-embed SearchWorks SWAP

Spotlight
Exhibits
Portfolios

Dor 
Indexing 

App
Argo

Modsulator 
Modsulator 
App Rails

SDR 
Services 

App

Stacks Wowza

Dor 
Camel 
Routes

Mods 
profiling 
indexer

Ingest

Hydrus ETDs
Pre-Assembly
(Digitization, 

Google books, Other)
Goobi WASAssembly 

Utils Dir Validator
Assembly 
ObjectFile

Assembly 
Image

Stacks / Shelves

Stacks NFS 
mounts A/V WASGeo

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/cmh2166/sdr_current_state/blob/master/SURI.md
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/portfolios
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/argo
https://github.com/sul-dlss/modsulator
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://docs.google.com/drawings/d/1f2nuhSlG7Ct2RZLYZTHZduHuEPQTg2Rq9BW0IG_VbcQ/edit?usp=sharing
https://docs.google.com/drawings/d/1b9SisyUuUFs2RqDh11LRjXt15Hm6TT6HEq4dNuHXz-s/edit?usp=sharing
https://docs.google.com/drawings/d/11snoNlCLLUEjI1onYC0TqlY-2PqeJhp7QuqBeJK1KIQ/edit?usp=sharing
https://docs.google.com/drawings/d/1QT8UwrEkZtUSblJgrDoA-VcR7N0IxkBkzM4UiUMON4A/edit?usp=sharing
https://github.com/sul-dlss/assembly-utils
https://github.com/sul-dlss/assembly-utils


http://bit.ly/HydrasToTacos 

2. Our Approach(es) to 
re-architecting our system

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

PURL+DOR Services
Dor 

Services 
App

Dor 
Services 

Gem
SURI

Dor 
Workflow 
Service

Workflow 
Service

Robots
Robots 
Master

Lyber 
Core

ETD 
Robots

WAS 
Robot 
Suite

Assembly Goobi 
Robot

Robot 
controller

Gis 
robot 
suite

Common 
Accessioning

Item 
Release

WAS 
Metadata 
Extractor

Sdr 
Pres 
Core 
Robots

Dor 
gsb 

robots

High-Level 
Overview of SDR 

ecosystem
June 2017

This doesn’t include 
everything but focuses on 
applications in end-to-end 

SDR general processing. 

Argo+

Fedora 
3 PURL

SUL MQ

PURL 
Fetcher

Preservation
SDR 

preservation 
core

moab 
versioning

Archive 
catalog

File 
system 

& 
tapes?

Indexing, Access, & Discovery

Discovery 
Dispatcher sw-indexer sul-embed SearchWorks SWAP

Spotlight
Exhibits
Portfolios

Dor 
Indexing 

App
Argo

Modsulator 
Modsulator 
App Rails

SDR 
Services 

App

Stacks Wowza

Dor 
Camel 
Routes

Mods 
profiling 
indexer

Ingest

Hydrus ETDs
Pre-Assembly
(Digitization, 

Google books, Other)
Goobi WASAssembly 

Utils Dir Validator
Assembly 
ObjectFile

Assembly 
Image

Stacks / Shelves

Stacks NFS 
mounts A/V WASGeo

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services-app
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/sul-dlss/dor-services
https://github.com/cmh2166/sdr_current_state/blob/master/SURI.md
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/dor-workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/workflow-service
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/dor-gsb-robots
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/exhibits
https://github.com/sul-dlss/portfolios
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/dor_indexing_app
https://github.com/sul-dlss/argo
https://github.com/sul-dlss/modsulator
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/modsulator-app-rails
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://github.com/sul-dlss/dor-camel-routes
https://docs.google.com/drawings/d/1f2nuhSlG7Ct2RZLYZTHZduHuEPQTg2Rq9BW0IG_VbcQ/edit?usp=sharing
https://docs.google.com/drawings/d/1b9SisyUuUFs2RqDh11LRjXt15Hm6TT6HEq4dNuHXz-s/edit?usp=sharing
https://docs.google.com/drawings/d/11snoNlCLLUEjI1onYC0TqlY-2PqeJhp7QuqBeJK1KIQ/edit?usp=sharing
https://docs.google.com/drawings/d/1QT8UwrEkZtUSblJgrDoA-VcR7N0IxkBkzM4UiUMON4A/edit?usp=sharing
https://github.com/sul-dlss/assembly-utils
https://github.com/sul-dlss/assembly-utils


http://bit.ly/HydrasToTacos 

SDR2 ‘Retrospective’
● Lack of full system comprehension
● Lots of unmaintained codebases & workflows
● Over-engineered components 
● Pain points on adding new features or processes
● Mismatch of design(s) & implementation(s)

“There are a lot of interaction points between layers of 
the technology stack and you often need to know a lot 
about all of these interactions even if you are only 
currently concerned with one part of the stack.”

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Looked to Samvera / Hydra & Hybox

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

SDR3 Design Cycle
● 3 months of daily 1 hour meetings with architect, engineers, product owners, 

administrators, & others
● Produced requirements independent of system expectations
● Built shared understanding of our current needs & conceptual architecture
● In tandem: did a ‘current state’ deep dive on our existing code
● Generated a high-level conceptual design & plan

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Hyrax Analysis: SDR Options
1. Do not use Hyrax at all for SDR3. Non-starter.
2. Use Hyrax for SDR3 entirely. However...

a. ~38% of our core, reviewed requirements are not covered by Hyrax.
b. ~24% of those are ‘Maybe’, i.e. require config, model changes, or coding.
c. Most alignment with UI / Self-Deposit, direction of analytics, web dev.
d. Least alignment in overall architecture, bulk processing, back-end needs.

3. Integrate Hyrax & SDR3 via components & ‘seams’.

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Hyrax Analysis: Possible ‘Seams’
● Valkyrie’s “internal air gap” approach for flexible data stores
● Actor Stack, Sipity, or Delayed Jobs: 

○ Write Hyrax MiddlewareStack as seam to our Management API & asynchronous processing. 
● Rely on both internal air gaps as well as crisp boundaries via ReST APIs.

○ Independent scalability.
○ Migration ‘hinge’ for components that don’t or shouldn’t fit into Hyrax.
○ Keeps separate areas of our work most aligned with the Samvera community:

■ self-deposit & access/discovery currently 
■ analytics and administration dashboards in the future

http://bit.ly/HydrasToTacos
https://github.com/samvera-labs/valkyrie
https://github.com/samvera/hyrax/blob/25eeefb21a2ed084fb5277febaeb38eb2b85a2c3/app/services/hyrax/default_middleware_stack.rb


http://bit.ly/HydrasToTacos 

Fedora 4 / Fedora API Analysis
● Incompleteness & uncertainty of specification work
● Graph store limitations

○ Keep Linked Data out of our back-end system

● Complexity & Comprehensibility
● Performance & Extensibility
● Data & Resource Handling
● System Expectations
● Re-approach Fedora overlap with 

our data publication (Access) systems

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

3. “SDR3” & TACO

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

SDR3 Evolutionary Plan
SDR3 Design Kick-Off (x3) & Hydrox Analysis Phase 

(10/03/2017-01/12/2018)

TACO Skeleton Prototype Phase
- TACO Prototype Work Cycle (01/12/2018-04/26/2018)

- SDR3 Design Iteration (4 month)
- ETDs ⇔ TACO Prototype, Bulk smoke test (3 months)

- SDR3 Design Iteration (1 month)

TACO Prototype Integration Phase 

ETDs ⇔ TACO “go live” & data migration

ETDs ⇔ Hydrus “go live” & data migration

...

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Preservation

Public Access Discovery & Display
Metadata StoreBinary File 

Store

Deposit (subsumes 
Self-Deposit)

Administration 
Assembly & 
Processing 

Management

Users & 
Groups 

Management

Permissions 
Service

Identifier 
Service

Administration 
Analytics 

Dashboard

SOPA
(Administration GUI)

TACO
(Repository Domain Management)

CRUD, Query Metadata or 
File Stores

Access 
Publication / 

Exposure

Deposit GUIs

Provenance & State 
Service

Preservation 
Hand-off

Refritos
(Async Processing)

SDR3 High Level Conceptual Design (so far)

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/permissions-service/
https://github.com/sul-dlss-labs/permissions-service/
https://github.com/sul-dlss-labs/identifier-service/
https://github.com/sul-dlss-labs/identifier-service/
https://github.com/sul-dlss-labs/taco


http://bit.ly/HydrasToTacos 

TACO Prototype’s Work Cycle 1 Goals

Deposit resources (binaries & 
metadata) into repository via API.

Drive forward Department API 
specifications, implementations, & 
practices.

Work towards new core with 
something visible to limited 
stakeholders to make it real-er.

Retrieve deposited resources from 
repository via API.

Test implementation options for our 
current SDR3 design.

Get feedback on SDR3 design, & 
check for roadblocks.

Persist resources. Vet our data models & metadata 
profiles.

Keep to high-level, extensible 
functional blocks.

Perform skeletal resource 
processing (i.e. workflows).

Test feasibility of possible 
technologies:

● Hyrax integration points.
● Test throughput / scalability.
● SDR2 & SDR3 analytics.
● Inform cloud practices.
● Cloud first but Cloud neutral.

Showcase internal / lower stack 
rewrites needed for moving middle 
and end-user codebases forward.

http://bit.ly/HydrasToTacos


TACO Prototype Work Cycle

TACO, or our SDR3 Management API 
& Persistence Skeleton: 

● Foundational & extensible work 
for evolution of SDR2. 

● Modular basis for new & existing 
components.

● Addresses our core 
problematic technology, i.e. 
Fedora 3. 

● Serves user requirements for 
flexible, consistent ingest & 
data models.

Management API
1. Deposit a resource
2. Update a resource
3. Delete a resource
4. Retrieve a resource
5. Get a resource’s status

Client Application Workflow
Management API:
1. Create or Get ID for Object
2. Attach Fileset to Object
3. Attach File to Fileset
4. Add Object to Collection

Administration API (i.e. 
Shape-Aware):
1. Create or Get ID for any 
resource (including complex / 
iterative resources)
2. Create or Get Data for any 
resource (including complex / 
iterative resources)

Management Processing Steps: Sync
1. Syntactic JSON Check
2. Permissions Service Call
3. Metadata Validation: Core 
processing fields? Required 
relationships? Type-specific 
requirements?
4. Identifier Service Calls
5. Apply or Check Versioning
6. Return SDR3 Identifier

Management Processing Steps: ASync
1. Transform / Enhance Metadata
2. Generate Derivative (Metadata 
or Binaries)
3. Update Persistent (Meta)Data
4. Release to downstream systems

Processing Stream: 
Kinesis & Kinesis 
Client Library (KCL)

Binaries 
Store: S3

Metadata (JSON-LD) 
Store: DynamoDb

Management API: 
Swagger & Go

Prep & Routing Process: 
Go & AWS SDK

Permissions Service: 
Swagger & Go

Identifier Service: 
Swagger & Go

Provenance Service: 
Kinesis

Administrative API: Swagger 
& Go

AccessPreservation Analytics 
(Admin)

Core 
Workflow 
DAGs



http://bit.ly/HydrasToTacos 

Go & Docker for TACO Codebase
● Ability to be modular, with APIs as clean boundaries & work in Cloud (AWS).
● Decision to use compiled language coupled Docker for deployment.
● Efficient Docker container deployment with small, executable binaries (as 

opposed to platforms that require an operating system and server).
● Focusing on compilable language for small, efficient services led us to Go 

language.

See the TACO Prototype GitHub Repository Wiki for all docs + more .

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/wiki


http://bit.ly/HydrasToTacos 

Go & Swagger Prototype Codebase 
Additional TACO Prototype goals included:

● rapid development and delivery; 
● SWAGGER specification support for consistent API to Code translations & 

share-ability of APIs across languages; 
● support for continuous deployment & cloud solutions; 
● parallelization fit for horizontal scalability.

See the TACO Prototype GitHub Repository Wiki for all docs + more .

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/wiki


http://bit.ly/HydrasToTacos 

AWS Selections for TACO 
● Docker containers for sending off the codebase binary.
● AWS ECS (elastic container service) for running this image.
● CircleCI for Continuous Integration with AWS ECS & Docker due to its use by 

industry for similar set-ups.
● Terraform for building out AWS infrastructure
● AWS DynamoDb for metadata persistence for the prototype.

○ Very likely to use RDS in production.

● AWS S3 for binaries for the prototype.

See the TACO Prototype GitHub Repository Wiki for all docs + more .

http://bit.ly/HydrasToTacos
https://www.terraform.io/
https://github.com/sul-dlss-labs/taco/wiki


http://bit.ly/HydrasToTacos 

Cloud-first but Cloud-neutral
Our considered & kept-in-mind graceful degradation paths:

● Docker => Docker is reusable.
● AWS ECS => Any system or VM that can run Docker. Docker swarm?
● Swagger 2.0 => Specification Built for Translateability
● Go + go-swagger => Just use Ruby.
● AWS dynamodb => CouchDB or Postgres.
● AWS s3 => File system.
● AWS kinesis => Kafka or Spark Streaming when ready.

See the TACO Prototype GitHub Repository Wiki for all docs + more .

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/wiki


http://bit.ly/HydrasToTacos 

Kafka / Kinesis?
● Early design had event driven system 

for managing resource state & asych, 
DAG-based processing

● Put too much intelligence into TACO
● Kinesis deemed not suitable
● Re-designing to use Kafka-inspired 

event system within our Provenance 
& State Service

● Our asychronous, DAG-driven 
processing inspired by Airflow 
becomes parallel to SDR3

http://bit.ly/HydrasToTacos
https://airflow.apache.org/


http://bit.ly/HydrasToTacos 

Special Note: Fedora 4 API vs TACO API
● TACO API aims to be much simpler than Fedora API.
● Decoupled from Linked Data Platform at this level of our stack.

○ We are supporting JSON / JSON-LD, which allows LD higher up.

● Reduced API calls, leading to increased performance.
○ Up to %50 less if we include ACLs, FileSets & ORE proxy ordering.

http://bit.ly/HydrasToTacos


TACO
Data
Models

Digital Repository Collection
(optional abstraction layer)

Digital Repository Object

hasMember

Digital Repository Object - Part
(optional abstraction layer)

hasMember

File Grouping

Analog Resource / Workis represented by

role Agent

is contained by

Files (Binaries)

is contained by

Operational Annotation

has target

User

Group

is member ofhas member

DRO: Agreement

Authorization / Permission

File Grouping

is contained by

Files (Binaries)

is contained by

agent

agreement

modeactions

access to

Roles

described by

PURL/XML

has agreement

Model Structural Overview
Blue == Managed by Domain ; 
Purple == File managed by Domain ; 
Orange == relationship ; 
Green == Externally managed by other domain or at 
application level

has metadata 
source

Provided 
Source 
Metadata



See the SDR3 Metadata Models for MAPS, docs + more .

TACO
Metadata
Application 
Profiles (JSON 
Schema)

https://github.com/sul-dlss-labs/sdr3-models


http://bit.ly/HydrasToTacos 

4. What’s Next?

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Current Design Work
● File system analysis for options & costs
● Asynchronous & batch processing system design work going on

○ Heavily influenced by Apache Airflow

● Metadata efforts have free range approach
○ Starting with a metadata use cases analysis before jumping into schemas / ontologies
○ JSON[-LD] & JSON Schema used for flexibility, separation of external semantics & internal 

data shapes

● Preparing for next work cycle to revise & connect TACO ultimately to a 
self-deposit system & a bulk load job

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Keeping Community Connections
● Samvera architecture & front-end work re-approach
● Interest in architectural overlaps with FOLIO
● Code4Lib Spark in the Dark overlaps
● Using PCDM, MOAB => OCFL, revisiting other places to share our data 

specifications
● Blacklight, IIIF, & related Access systems community work untouched
● Looking outside of cultural heritage for community partners & ideas

○ Airflow
○ AWS

● Asking our community friends & experts like ELAG participants for feedback

http://bit.ly/HydrasToTacos


http://bit.ly/HydrasToTacos 

Questions or 
Feedback?

cmharlow@stanford.edu
@cm_harlow

https://github.com/sul-dlss-labs/taco/ 

?

?
?

??

http://bit.ly/HydrasToTacos
https://github.com/sul-dlss-labs/taco/

